Intelligence artificielle et bio-inspiration : s’adapter aux contextes changeants
Résumé
Les intervenants réunis à la tribune aujourd’hui sont tous deux issus du Département d'Électricité et d'Informatique de la Faculté des Sciences Appliquées de l’Institut Montéfiore (ULiège) et collaborent de longue date. De cette collaboration de recherche entre un neuroscientifique et un ingénieur informaticien, est née une nouvelle méthode d’intelligence artificielle, capable de s’adapter. Cette technique est directement inspirée de la neuromodulation, un phénomène physiologique essentiel du cerveau humain.
Après un bref rappel historique des avancées sur le développement des réseaux de neurones artificiels, en parallèle aux avancées des connaissances en neurosciences, Guillaume Drion, Chargé de cours, a abordé les différences clés entre l’intelligence artificielle et l’intelligence humaine, les implications de ces différences et comment les surmonter, via l’approche bio-inspiration.
La différence clé entre la biologie et l’intelligence artificielle actuelle est l’adaptabilité, qui réside dans le fait qu’une intelligence soit capable de s’adapter à un contexte changeant de façon rapide et efficace. À côté de cela, il y a aussi la capacité à extrapoler, en utilisant ses compétences/son expérience.
Les humains ont des facultés d’adaptation extraordinaires au contraire des machines. En effet, les machines peuvent apprendre des comportements très spécialisés dans des environnements spécifiques et effectuer certaines tâches mieux que les humains lorsqu’elles sont entrainées pour celles-ci (par exemple, la reconnaissance d’image, les jeux...) mais sont décevantes lorsque les conditions changent, même de façon minime, par manque de propriétés adaptatives.
Pour avoir une IA plus humaine, on prône donc une IA plus « neuro-inspirée » et un retour à la bio-inspiration.
Les facultés d’adaptation humaines dépendent d’un mécanisme neuronal appelé neuromodulation. Mécanisme par lequel les neurones peuvent rapidement modifier leur réponse aux stimulations externes en fonction du contexte, la neuromodulation exploite la grande complexité de la signalisation neuronale.
C’est sur l’extraction et l’implémentation des mécanismes de neuromodulation dans les réseaux de neurones artificiels que l’équipe de recherche travaille afin, d’une part, de développer de nouvelles architectures réseaux dédiées à l’adaptation et, d’autre part, d’augmenter les performances des réseaux artificiels par l’exploitation d’une dynamique neuronale plus riche et modulable.
Documentaire de 1961 « The Thinking Machine » (MIT Centennial Film)
Nicolas Vecoven, Doctorant, est ensuite entré dans le concret des mécanismes évoqués précédemment et les a abordés d’un point de vue industriel, sous l’angle de potentielles applications.
Il a montré qu’avec l’architecture proposée, aucun modèle ne doit être construit de zéro. Grâce à l’entrainement sur des machines préexistantes, le modèle peut s’adapter à la nouvelle machine avec très peu de données. Cela ne nécessite donc pas de phase d’apprentissage mais bien une phase d’adaptation, ce qui exige moins de données et engendre une réduction des coûts.
Retrouvez le replay et les présentations de cette rencontre ci-dessous :
Intelligence artificielle et bio-inspiration : s’adapter aux contextes changeants | LIEGE CREATIVE, 17.11.20 from LIEGE CREATIVEAnnonce
Cette rencontre est à présent complète. Si vous souhaitez être inscrit sur la liste d'attente, merci d'envoyer un mail à info@liegecreative.be
Bien que capables de résoudre des problèmes de plus en plus complexes, les algorithmes d’intelligence artificielle restent très peu robustes. En effet, une fois un modèle entrainé pour effectuer une tâche précise - telle que la prédiction d’usure sur une machine dans une chaine de production, par exemple - il sera très difficile de le réutiliser, même pour une tâche similaire. Imaginons une autre machine du même type...
Au vu de la quantité de données, souvent coûteuses, nécessaires pour entrainer et construire de tels modèles, cela peut poser bien des problèmes.
Lors de cette rencontre-conférence, nous présenterons une technique permettant d’adapter plus facilement des modèles à d’autres tâches similaires. Cette technique est directement inspirée de la neuromodulation, un phénomène physiologique essentiel du cerveau humain. Cette intelligence artificielle d'un nouveau genre, capable de s'adapter, est issue d’une collaboration de recherche entre un neuroscientifique et un ingénieur informaticien.
Nous accentuerons le caractère interdisciplinaire du développement de cette méthode, ainsi que de potentielles applications.
Afin de favoriser les échanges, cette rencontre-conférence en ligne est prévue pour 25 participants. Le lien pour accéder à la conférence vous sera communiqué quelques jours avant l'événement.